Amateur Radio RF Exposure

Dan Brown, W1DAN

Eastern Massachusetts ARRL Section Technical Coordinator

What Just Happened?

A new Report and Order just came into effect.

A few RF Exposure Rules changed May 3 2021

Just an analysis change

Most ham stations are compliant already

Cliffs Notes Summary

- If you evaluated before May 3, you can wait two years to re-evaluate.
- If your station power was increased or antennas changed, just re evaluate.
- Use easy online calculators to evaluate
- You may now leave this meeting! ©

Good Folks RF-Exposed!

- Ed Hare W1RFI
 - Wrote the book RFI Exposure and You in 1998
 - ARRL Lab supervisor
 - IEEE EMC Society VP for Standards
- Greg Lapin N9GL
 - Chair ARRL RF Safety committee
 - IEEE Committee on Man and Radiation
 - FCC tech advisory council
 - Consultant on RF exposure issues

Who Am I?

- Dan Brown W1DAN
 - A guy with ham antennas in Natick, MA
 - Eastern Massachusetts ARRL Technical Coordinator
 - https://ema.arrl.org/
 - Wellesley Amateur Radio Society President
 - https://ema.arrl.org/wellesley-amateur-radio-society/
 - Learning as we go!

RF Exposure Is....

- Tissue heating due to the exposure of high levels of radio frequency electromagnetic energy.
 - Warms up areas of the body
 - Body may not be able to dissipate the heat
 - May damage tissue if a very high field
- Guidelines were created in 1985 by
 - National Council on Radiation Protection and Measurements
 - IEEE


1998 first FCC exposure rules came into effect 2019 new rules created, but delayed until May 3, 2021

I) FCC Rules and Guidelines

- FCC Report and Order 19-126 (new)
 - Rules for RF exposure (not just Amateur)
 - Issued December 2019
 - Approved <u>April 2021</u>
 - Active May 3 2021
 - Past exposure standards maintained
- FCC 47CFR parts 1,2, 97 (not new)
 - Our Amateur Radio service regulations
- OET Bulletin 65 (not new)
 - How to determine RF exposure compliance
 - 'Not just for hams
 - OET-65B "tuned for hams"

Goals....

- Limit human RF exposure:
 - Stay below a safe threshold
 - Radio Amateurs-Occupational/<u>controlled</u>-higher threshold, shorter time
 - General Population/uncontrolled-lower threshold
 - OLD NEWS!
- We must evaluate RF exposure
- I think should have documentation available showing compliance.
- If out of compliance, correct

New FCC Report and Order 19-126

- Current exposure standards maintained.
- FCC R&O 19-126 harmonizes exposure rules across all services.
 - Biggest change is the <u>categorical exclusion</u> and <u>table</u> are gone.
- Hams now use a formula-based evaluation-like other radio services do.
- Limits for Maximum Permissible Exposure (MPE) have not changed.
- Exemption available.
- If a radio antenna is within 20cm of body, need RF field measured or modeled (i.e. 2M HT)
- Mobile and portable transmitters included (mobile, HTs, POTA, SOTA)
- Must be able to prove your station is safe-repeaters too.
- Can determine compliance any reasonable way.

Who Must Comply?

- New or changed stations must be in compliance now.
- Existing stations who had complied under old rules have until May 3 2023 to evaluate.
 - Valid until you change your station.

If you relied on the categorical exclusion table to avoid performing evaluations, the FCC is giving you 2years to do an eval.

- ARRL is assisting the FCC and is making tools for us.
- ARRL FAQ sheet available.

OET-65B Table-1 GONE-now calculate!

Wavelength Band	Evaluation Required if Power* (watts) Exceeds:
	MF
160 m	500
	HF
80 m	500
75 m	500
40 m	500
30 m	425
20 m	225
17 m	125
15 m	100
12 m	75
10 m	50
VHF (all bands)	50
	UHF
70 cm	70
33 cm	150
23 cm	200
13 cm	250
SHF (all bands)	250
EHF (all bands)	250
Repeater stations (all bands)	non-building-mounted antennas: height above ground level to lowest point of antenna < 10 m and power > 500 W ERP building-mounted antennas: power > 500 W ERP

^{*} Transmitter power = PEP input to antenna. For repeater stations only, power exclusion based on ERP (effective radiated power).

Exemptions

- New R&O 19-126 <u>Table 2</u>: exemptions based on frequency, power and distance from the antenna to the nearest person.
 - If below a Threshold ERP, you are good!
 - If under 1mW, no need to eval.
- If you don't qualify for an exemption, you must perform a full exposure analysis.

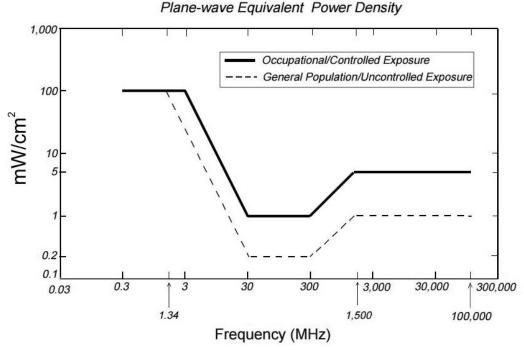
FCC 19-126A1 Table 2-MPE-based far-field exemptions

Table 2. Single RF Sources Subject to Routine Environmental Evaluation under MPE-Based Exemptions, $R \ge \lambda/2\pi$

Threshold ERP
1,920 R²
$3,450 \text{ R}^2/\text{f}^2$
3.83 R ²
0.0128 R ² f
19.2 R ²

Note: Transmitter Frequency is in MHz, Threshold ERP is in watts, R is in meters, f is in MHz.

Maximum Permissible Exposure (MPE)


- MPE cannot be exceeded (not new)!
 - RF in body causes heat
 - Varies with frequency
 - Measured in mW/cm²
 - Averaged over time
 - 30-minutes for <u>uncontrolled</u> environments (general population)
 - 6 minutes for <u>controlled</u> environments (hams)
 - No reset period
- Based on Specific Absorption Rate (SAR).
 - See OET-65C if interested

OET-65 MPE Chart (old news)

Figure 1. FCC Limits for Maximum Permissible Exposure (MPE)

II) Exposure Analysis

- For stations that have not been grandfathered, you now <u>must</u> perform your own exposure analyses.
- Grandfathered stations may do within 2 years.
- Do not have to submit the results to the FCC.
- If you change your station, redo.
- Use any valid method.
- Documentation is not mandated.
- If an event occurs (i.e. a complaint), you must show your exposure compliance to the FCC.

You're Hot!

- Human tissue is most sensitive to VHF
 - VHF (2M HT) is worse case
 - Older HT's grandfathered
 - Newer HTs need modeling
 - Higher prices?
- SAR is used above 300MHz
 - Impractical for hams

MPE Limits for Occupational/Controlled

Table 1. LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency Range	Electric Field Strength (E)	Magnetic Field Strength (H)	Power Density (S)	Averaging Time E ² , H ² or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

MPE Limits for General-Population/ Uncontrolled

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

*Plane-wave equivalent power density

Want to <u>measure</u> your RF field?

- Accurate unit, but environment affects results
- NARDA Radman 2XT
 - \$900
 - Others available
 - Not required
 - Most folks will calculate

Modeling

- EZNEC (https://www.eznec.com)
 - Antenna modeling, good for hams (beams)
 - Might be needed for more accurate results
 - Ground-reflections
- SAR
 - UHF and higher
 - Expensive, HTs and cell phones
- FDTD
- FEM

Feedline

- If feedline is matched to antenna, it does not radiate
 - Coax or ladderline
- Just need to determine loss.

OET-65 Equations

- Allow you to predict your safe field strength for you and others.
- Result is power density at a certain distance from your antenna.
 - Measured in Watts per meter-squared
- Reasonable determination of RF safety
 - Hopefully below safe MPE
- Don't bother, just use online calculators!

OET-65 Equations

$$S = \frac{PG}{4\pi R^2}$$
 3)

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

or:

$$S = \frac{EIRP}{4\pi R^2} \tag{4}$$

where: EIRP = equivalent (or effective) isotropically radiated power

Average Power

- Based on mode(duty cycle) and time (transmit percentage)
- Averaging time can halve the exposure. Use 30-minute (general population) standard
- Time
 - 6 minutes for controlled
 - 30 minutes for uncontrolled
- Duty Factor
 - FT8 is 50% (half-time tx)
 - See table at right.

Table 2. Duty Factor of Modes Commonly Used by Amateurs

Mode	Duty Factor	Notes
Conversational SSB	20%	Note 1
Conversational SSB	50%	Note 2
Voice FM	100%	
FSK or RTTY	100%	
AFSK SSB	100%	
Conversational CW	40%	
Carrier	100%	Note 3

- Note 1: Includes voice characteristics and syllabic duty factor. No speech processing.
- Note 2: Includes voice characteristics and syllabic duty factor. Heavy speech processor employed.
- Note 3: A full carrier is commonly used for tune-up purposes

Fun RF Exposure Calculators!

- Paul VP9KF:
 - http://hintlink.com/power density.htm
 - Shows compliance at a given distance
- Lake Washington Ham Club and Wayne N6NB:
 - http://www.lakewashingtonhamclub.org/resources/rf-exposure-calculator/
 - Shows distance to compliance
- Ham Radio School Excel Sheet (save XLS file):
 - https://hamradioschool.com/rf-exposure-calculator/
 - Shows MPE and compliance for a given distance
- These calculators are easier to use than solving the OET65 calculations by hand.
 - Note ERP and Average power
 - Note Meters or Feet

III) Example Calculations

- •10M SSB
- 20M Contest
- •2M Mobile

Example-1: 10M-SSB

100w SSB radio

PEP

Will convert to Average

Dipole antenna

Unity Gain

• 2.2dBi

10M (28.5MHz)

100-feet RG58

2dB loss

Using Hintlink online calculator

http://hintlink.com/power_density.htm

Example 1 Values

Calculate Radio Frequency Exposure

The ERP at the antenna:	00.55
In watts	62.55
The antenna gain in dBi: Enter 2.2 for dipoles; add 2.2 for antennas rated in dBd	2.2
The distance to the area of interest: From the centre of the antenna, in metres	9
The frequency of operation: In MHz	28.5
Ground Reflection Effects In most cases, the ground reflection factor is needed to provide a truly stimate of the compliance distance in the main beam of the antenna. I round reflection effects may yield more accurate results especially wintennas, non-directional antennas, and calculations below the main lontennas.	ncluding the th very low
Oo you wish to include effects of ground reflections? • Yes O No	
Calculate RF Power Density Reset Values	

You May Operate 10M SSB!

Calculation Results

Average Power at the Antenna	62.55 watts
Antenna Gain in dBi	2.2 dBi
Distance to the Area of Interest	9 metres 29.53 feet
Frequency of Operation	28.5 MHz
Are Ground Reflections Calculated?	Yes
Estimated RF Power Density	0.0262 mW/cm ²

	Controlled Environment	Uncontrolled Environment
Maximum Permissible Exposure (MPE)	1.11 mW/cm ²	0.23 mW/cm ²
Distance to Compliance From Centre of Antenna	1.4 metres 4.58 feet	3.1 metres 10.18 feet
Does the Area of Interest Appear to be in Compliance?	Yes	Yes

Example-2: 20M-SSB Contest Station

1,500w SSB radio

PEP

Convert to average

Beam antenna

Three-element Yagi

• 9dB gain

20M (14.2MHz)

100 feet RG8 coax

- 0.46dB loss
- •

Using Lake Washington online calculator

http://www.lakewashingtonhamclub.org/resources/rf-exposure-calculator/

Example 2 Average Power

- (Using the Lake Washington Ham Club calculator)
- Average Power prep:
 - 1,500w PEP transmitter
 - RG8 coax loss at 14.2MHz = 0.46dB
 - 1,348 Watts at antenna
 - Times SSB duty cycle (20%)=269.64w "Average"
- Antenna gain 9dB

Example 2 Results-Good!

Parameters
Average Power at Antenna (watts): 269.64
Antenna Gain (dBi): 9
Operating Frequency (MHz): 14.2
☐ Include Effects of Ground Reflections
Calculate
Results for a controlled environment:
Maximum Allowed Power Density (mw/cm²): 4.4634
Minimum Safe Distance (feet): 6.4112
For an uncontrolled environment:
Maximum Allowed Power Density (mw/cm²): 0.8927
Minimum Safe Distance (feet): 14.3359

Example-3: 2M-FM Mobile

50w FM radio

100% Duty

- FM mode
- Transmit % 0.5

5/8-wave vertical

- 4.4dBi gain
- On car roof

2M (147MHz)

5-feet of RG-58 coax

• 0.235dB loss

Using Ham Radio School Excel Spreadhseet

https://hamradioschool.com/rf-exposure-calculator/

Example-3 Values

Enter Values:				
Transmitter PEP output (W)	50	watts		
Feedline length (ft)	5	feet		
Feedline loss / 100 ft (dB)	0.7	dB		
Operating Mode (select)	FM	mode		
Transmit On Percentage (0 to 1)	0.5			
Transmitting Frequency (MHz)	147	MHz		
Average Power into Antenna =	24.80	watts		
(Calculated no value entry)				
Antenna Gain (dBi)	4.4	dBi		
Distance to Area of Interest (ft)	8.7	feet		

Example-3 Results-Need Distance

• A pedestrian needs to be 8.7 feet from your 2M antenna to be under 0.2mw/cm-sq.

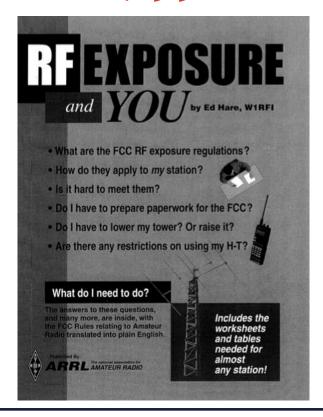
			Uncontrolled MPE	,
Power Density =	0.0773 mW/cm^2	1.0000	0.2000	mW/cm^2
	In compliance?	Yes	Yes	
Power Density with Reflection =	0.1979 mW/cm^2	1.0000	0.2000	mW/cm^2
	In compliance?	Yes	Yes	

Run Your Own Evaluations!

- Exercise the online calculator of your choice:
 - To learn how close folks can be
 - For all of your antennas, frequencies, modes and power levels.
 - Print and keep the results
 - Keep fresh beer cold for the FCC inspector

Mitigation

- It is our responsibility to make sure we do not overexpose ourselves or others to RF.
 - Restrict access to antenna
 - Mount antennas higher
 - Talk for shorter periods
 - Lower power
 - Pause operating when folks near antenna



Need Help?

- ARRL Technical Information Service:
- http://www.arrl.org/technical-information-service
- Email tis@arrl.org

FREE BOOK PDF (1998 W1RFI)

Summary

- Note your station and antenna setup.
- Calculate RF field MPE's for the bands and modes you use
 - Use an online calculator
 - If out of compliance, remedy

A Few Web-Links

- ARRL RF Exposure page:
 - http://www.arrl.org/rf-exposure
- FCC R&O 19-126:
 - https://docs.fcc.gov/public/attachments/FCC-19-126A1.pdf
- FCC OET-65 Page:
 - https://transition.fcc.gov/Bureaus/Engineering Technology/Documents/bulletins/oet65/oet65b.pdf
- Coax Loss Calculator:
 - https://www.gsl.net/co8tw/Coax Calculator.htm
- Ed Hare's RF Exposure and You book:
 - http://www.arrl.org/files/file/Technology/RFsafetyCommittee/RF+Exposure+and+You.pdf
- Ria N2RJ's video:
 - https://www.youtube.com/watch?v=kyLDC-H8kb0

Thanks Goes To!

- Ed Hare W1RFI
- Greg Lapin N9GL
- Kris Bickell K1BIC
 - Life Long Learning Manager
 - Thanks for hosting us!
- Phil Temples K9HI
 - New England Vice Director
- And finally....
 - THANK YOU for joining us!

Questions?

Dan Brown

W1DAN@arrl.net

